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CHAPTER 1: INTRODUCTION 

PROBLEM  

Inclement weather influences roadway safety, mobility, and productivity. It affects roadway 

safety through higher crash risk. Federal Highway Administration (FHWA) defines inclement 

crashes as “those crashes that occur in adverse weather (i.e., rain, sleet, snow, and/or fog) or on 

slick pavement (i.e., wet pavement, snowy/slushy pavement, or icy pavement)” (FHWA, 2016). 

Drivers tend to adapt their driving behavior to adjust the conditions presented by inclement 

weather. Depending on the surroundings and visibility issues, drivers drive more vigilantly by 

keeping longer headways, reducing operating speeds, or being more cautious. Approximately 

24 percent of the U.S. traffic crashes happen due to inclement weather, resulting in 7,130 

fatalities and 629,000 injuries (Murphy et al., 2012). According to FHWA, inclement weather 

contributed to over 13 percent of injury crashes and over 10 percent of fatal crashes in 2013. 

Moreover, there is a perception that transportation planners and managers can do little about 

weather induced crash prevention. Visibility conditions at the time of a crash are rarely 

documented at a high level of detail in the conventional police reports. While vision is a key 

component of how drivers acquire information, a direct relationship between quantified levels of 

visibility related issues and safety (in terms of crashes) needs to be identified. This research 

seeks to understand the ramifications of inclement weather on safety from a perspective of 

visibility and other key issues.  

KEY OBJECTIVE 

The key objective of this study is to examine safety impacts of reduced visibility and associated 

issues during inclement weather driving. 

RESEARCH APPROACH 

To perform a robust analysis on inclement weather crashes, the research team performed a 

systematic literature review to determine the key factors associated with inclement weather 

related crashes. The research team used the second Strategic Highway Research Program’s 

(SHRP2) Roadway Information Database (RID) database to determine the suitable states for data 

analysis. After performing quality check on the availability of the variables and percentage of 

missing information in each of the variables, the research team selected two states for analysis: 

Florida and Washington. To examine the safety impacts of inclement weather crashes, this study 

used three methods: 1) parametric model (ordinal logistic regression) development to quantify 

visibility issues by using Florida SHRP2 RID, 2) non-parametric analysis (multiple 

correspondence analysis [MCA]) to identify key associated factors for inclement weather crashes 

by using Washington SHRP2 RID, and 3) topic model development by analyzing inclement 

weather related crash narratives from SHRP2 Insight website.  



 

 

 2 

OUTLINE OF THE REPORT 

This report is organized as follows. Chapter 1 discusses research problem, key objective, and 

research approach. Chapter 2 provides the literature review on the existing body of research. 

Chapter 3 describes parametric statistic models, while Chapter 4 documents non-parametric 

analysis. Chapter 5 provides description on the text mining performed on the crash narratives. 

Chapter 6 describes conclusions. 

 

 

 



 

 

 3 

CHAPTER 2: LITERATURE REVIEW 

There is a substantial body of research and knowledge on inclement weather crashes. This study 

provides a brief summary of past studies. 

VISIBILITY  

Studies evaluating driver behavior in inclement weather have been oriented toward large-scale 

observations rather than changes at the level of the individual driver. For example, researchers 

identified how inclement weather affects traffic speed, flow, and density on freeways in Seattle, 

Baltimore, and Minneapolis-Saint Paul (Rakha et al., 2008). Light rain was found to reduce free-

flow speed 2 to 3.6 percent, capacity 10 to 11 percent, and the speed at capacity 8 to 10 percent. 

The reductions on free-flow speed and capacity increased with rain intensity, and snow had a 

larger impact on free-flow speed and capacity than rain. The researchers also found that visibility 

affects traffic conditions. Free-flow speeds on freeways in inclement weather were also studied 

in Spain (Camacho et al., 2010), identifying a reduction in speed by 5.5 to 7 km/h for rain and 9 

to 13.7 km/h for snow. Wind affects free-flow speed only when the wind speed is above 8 m/s. 

Visibility affects free-flow speed only when visibility is less than 2,000 m. In a separate study 

(Bartlett et al., 2013), wind speed was also shown to have a small effect on traffic compared to 

other weather factors. Analyzing traffic volumes, the researchers identified that volume is 

reduced 13 to 34 percent during inclement weather. Traffic volume and speed have also been 

observed to decrease during inclement weather in China (Shang et al., 2015). 

In support of drivers responding to inclement weather by driving more conservatively, the 

research indicates that there is a change in traffic during inclement weather, not only in 

characteristics such as speed and capacity, but also in the number of vehicles on roads. The 

reduction in traffic volumes during inclement weather is a reflection of driving as a derived 

demand. Depending on the driver and the severity of the weather, it is worth postponing the 

commercial and recreational activities that would have occurred to a later time. While less 

driving occurs during inclement weather, there are also reductions in free-flow and operating 

speeds. This suggests that, while some drivers forego driving altogether, those that still choose to 

drive do so with some level of caution. 

While many drivers naturally drive slower during periods of inclement weather and low 

visibility, some agencies use variable speed limits on changeable message signs to encourage all 

drivers to respond similarly. Hassan et al. (2011) surveyed drivers in Florida to investigate 

whether drivers respond to reduced speed limits in low visibility. Their models indicate that 

drivers 18 to 25 years and female drivers 51 years and older are more likely to reduce their speed 

in response to a variable speed limit when it is used during fog in low to medium-high traffic. 

Drivers are also more likely to reduce their speed if they are on a two-lane road. 
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Despite the behavioral changes triggered by inclement weather, there are safety concerns with 

driving in poor conditions. Several studies have focused on the effects of weather on crashes, 

including those related to visibility. One notable area for studying weather and visibility effects 

has been the state of Florida, which has several locations that frequently experience fog.  

Abdel-Aty et al. (2011) compared crashes occurring in Florida during periods of fog and smoke 

with crashes during periods of clear visibility. They identified that there are a disproportionate 

number of crashes in fog and smoke when the speed limit is 55 mph or higher, light conditions 

are dark, and there is no street lighting. An odds ratio analysis showed that the probability of a 

crash in fog or smoke is 3.24 times more likely to result in a severe injury and is 1.53 times more 

likely to be a multiple vehicle crash. Head-on collisions are also more likely. One interesting 

note is that likelihood of young and middle-aged drivers to be in a crash increased during fog and 

smoke, but not for old drivers, suggesting that old drivers tend to apply more caution in periods 

of low visibility. Also in Florida, Wang et al. (2015) studied crashes on expressway ramps during 

periods of low visibility, finding an increase in the likelihood of a crash as visibility decreases. 

Though not focused on visibility, Sun et al. (2011) calculated an increase in crash risk for rainy 

weather compared to dry weather. Das and Sun (2014) used crash data of Louisiana to 

investigate the pattern of crashes under rainy weather. 

FACTORS OTHER THAN VISIBILITY 

Although visibility is a key concern in inclement weather crashes, researchers have considered 

many additional variables in their studies. Table 1 enlists significant factors other than visibility 

and related studies. The factors are divided into four major groups: 1) road characteristics, 2) 

environmental characteristics, 3) temporal factors, and 4) other factors. A short review on these 

major groups is described in this section. 

Road Characteristics 

Researchers have found that median width is likely to reduce crash frequency, while curves, 

shoulder, and steep downgrade slopes may increase crash frequencies under adverse weather 

conditions (Yu et al., 2015). In addition, steep grades increase the severity of a crash (Yu and 

Abdel-Aty, 2014). Kopelias et al. (2007) found that driver behavior was more dominant factor in 

crash frequency than road characteristics. Other researchers have investigated the effects of road 

characteristics on crashes and found that the effects of road geometry were not as significant as 

other variables in the models (Wei et al., 2017; Naik et al., 2016; Shaheed et al., 2016; El-

Basyouny et al., 2014b). 
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Table 1. Studies Using Factors Other than Visibility. 

Factors other than 

Visibility 

Study 

Road characteristics 

Median width (ft) Yu et al., 2015; Yu and Abdel-Aty, 2014 

Shoulder width (ft) Yu et al., 2015 

Number of lanes Yu et al., 2015; Yu and Abdel-Aty, 2014; Kopelias et al., 2007 

Alignment Yu et al., 2015; Yu and Abdel-Aty, 2014; Kopelias et al., 2007; Wei et al., 

2017 

Curvature Yu et al., 2015; Yu and Abdel-Aty, 2014; Kopelias et al., 2007; Wei et al., 

2017 

Road surface Naik et al., 2016; Shaheed et al., 2016; Wei et al., 2017 

Lighting condition Naik et al., 2016; El-Basyouny et al., 2014b; Wei et al., 2017 

Posted speed (mph) Xu et al., 2013; Kopelias et al., 2007 

Environmental characteristics 

Temperature El-Basyouny et al., 2014a; Naik et al., 2016; El-Basyouny et al., 2014b; Yu 

and Abdel-Aty, 2014 

Wind speed  Usman et al., 2012; Naik et al., 2016 

Precipitation intensity Yu et al., 2015; Usman et al., 2012; Xu et al., 2013; Qiu et al., 2008 

Adverse weather type Chakrabartya and Gupta, 2013; El-Basyouny et al., 2014a; Wei et al., 2017; 

Naik et al., 2016; Qiu et al., 2008; El-Basyouny et al., 2014b 

Temporal factors 

Time of the day Naik et al., 2016; Wei et al., 2017 

Day of the week Brijs et al., 2008; Shankar et al., 1995; El-Basyouny et al., 2014a; Kopelias 

et al., 2007; El-Basyouny et al., 2014b 

Other factors 

Season El-Basyouny et al., 2014b 

AADT (vpd) Ahmed et al., 2014; Xu et al., 2013; Kopelias et al., 2007; McCann and 

Fontaine, 2016 

Truck percentage Yu et al., 2015; Yu and Abdel-Aty, 2014; Kopelias et al., 2007 

Speed Xu et al., 2013; McCann and Fontaine, 2016; 

Collision type El-Basyouny et al. 2014a 

Injury severity Wei et al., 2017; Shaheed et al., 2016 

Contributing Factor Naik et al., 2016 

Major harmful event Shaheed et al., 2016 

Severity Shaheed et al., 2016; El-Basyouny et al., 2014b; Qiu et al., 2008 

Driver age Naik et al., 2016 

Driver gender Shaheed et al., 2016 

Registered vehicles  El-Basyouny et al., 2014b 

 

Environmental Characteristics 

El-Basyouny et al. (2014a) determined that wind gusts were mostly insignificant with a few 

exceptions. Factors such as wind speed, rain, snow, and lower temperatures had a positive 

correlation with increase in crash rates (Naik et al., 2016; El-Basyouny et al., 2014a; El-

Basyouny et al., 2014b). Qiu et al. (2014) reviewed crash records from previous studies. The 
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study determined that snow has a greater effect on crash occurrence than rain. According to the 

study results, snow increases the crash rate by 84 percent and injury rate by 75 percent. 

Temporal Factors 

Researchers found that duration of daylight was negatively related to crashes (El-Basyouny et 

al., 2014b). Other researchers have used these variables to account for fluctuations in traffic 

volume and visibility.  

Other Factors 

Researchers have investigated the effects of other factors that may be affected by inclement 

weather or low visibility. The effect of the season during the year was found to be significant by 

a recent study (El-Basyouny et al., 2014b). When looking at the effects of adverse weather on 

crash type, El-Basyouny et al. (2014b) found that inclement weather increases all crashes 

between 9 to 73.7 percent, and the highest increase was observed on run-off-the-road crashes. 

Ahmed et al. (2014) found that higher AADT during low-visibility periods led to a higher crash 

frequency. Xu et al. (2013) observed that speed difference had the largest impact during low-

visibility periods. McCann and Fontaine (2016) pointed out that although motorists slow down 

during low visibility conditions, there is a significant difference between observed speeds during 

the study and safe speed calculated using stopping sight distance. Naik et al. (2016) attempted to 

determine the effects of contributing factors such as driver age and alcohol consumption, among 

other factors, and found that the effects varies across individual driver crash injury severity.  
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CHAPTER 3: PARAMETRIC MODEL ON VISIBILITY ISSUES 

One of the primary causes of vehicular crashes is human error. This error ranges from complete 

negligence (e.g., distracted or impaired driving) to limitations of human abilities (e.g., slower 

reflexes with age, low visibility in inclement weather). One limitation that is often neglected is 

reduced visibility during inclement weather. The reduction of crashes in inclement weather will 

not be fully realized unless key association factors are thoroughly investigated. This study seeks 

to identify the effects of reduced visibility on the likelihood of crashes and the factors that 

influence crashes during periods of reduced visibility.  

Inclement weather presents a safety concern for vehicular traffic from multiple perspectives. One 

is the moisture on the road that reduces friction. Friction is reduced even more if the temperature 

is near freezing. Another safety concern is impaired visibility from precipitation on the 

windshield. Windshield wipers, despite their utility in removing the precipitation, can be 

distracting and intermittently impede the driver’s vision. The moisture droplets in the air also 

impact visibility. Visibility changes based on the size and concentration of the water droplets. 

Visibility can be measured with specialized instrumentation. The National Oceanic and 

Atmospheric Administration (NOAA) regularly measures atmospheric and ground-level 

conditions, including visibility, at airports so pilots and air traffic control can make informed 

decisions for flying. These readings are stored in historical databases maintained by NOAA. This 

study used historical weather data to identify the relationships between visibility and crashes. 

While low-visibility events tend to be associated with weather, there is one notable exception. 

Smoke is not a direct result of weather or precipitation, but usually a consequence of human 

dealings. The impact of smoke on crashes, in addition to the effects of fog, has been studied in 

previous work (Abdel-Aty et al., 2011). Smoke-related visibility events are infrequent and have a 

dramatically different quality than periods of reduced visibility caused by precipitation and 

moisture (such as fog or rain) because there is no water on the windshield nor need to use wipers. 

For consistency in the analysis, events with smoke are not of interest in this study. 

DATA COLLECTION AND PROCESSING 

The research team assembled a database of data collected in Florida from two different sources. 

These two sources are: 1) National Oceanic and Atmospheric Administration (NOAA) airport 

weather station data, and 2) SHRP2 RID data. Figure 1 illustrates a framework of the data 

compilation work to prepare the final dataset.  
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Figure 1. Flowchart of Data Compilation. 

 

NOAA WEATHER DATA 

The weather data used in the analysis was extracted from data collected by weather stations at 

airports in Florida. The data are now available in databases maintained by NOAA. The 

equipment at each weather station reported hourly measurements. Because timely visibility 

information is important at airports, weather measurements are made more frequently whenever 

there is a change in the recorded visibility distance. Having more observations increases the 
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precision with which periods of low visibility are identified. Researchers sifted through the 

weather data to identify periods when the visibility was within a defined range of poor visibility 

(0–0.5 mi) and medium visibility (0.5–4.0 mi). Each entry in the original weather data included a 

visibility level (in miles), temperature, and code for type of weather. 

The categorical options for type of weather include events such as rain, thunderstorm, drizzle, 

mist, hail, snow, and fog. Modifiers light or heavy can be applied to indicate a heavy 

thunderstorm or light rain. Because different types of weather events cause reduced visibility, it 

was critical to have consistency in the types of weather observed within the same category of 

visibility. Fog is the primary weather event associated with poor visibility; mist and rain are the 

primary weather events for medium visibility. Periods that had any record of snow, freezing 

temperatures, thunderstorms, and hail were removed as these incidences are very limited in 

numbers in Florida. Smoke was also occasionally the cause of low visibility. Periods with smoke 

were removed from the analysis to focus exclusively on reduced visibility associated with 

moisture.  

Each period of reduced visibility was matched with a period of normal visibility (9–10 mi) 

precisely one week earlier or one week later. This matching procedure, similar to the method 

used by Sun et al. (2011), produced a control sample. This method addresses spatial and 

temporal variations that are found in crash frequencies, where crashes can be more frequent 

during certain times of the year or in certain locations. Time periods with reduced visibility that 

could not be matched with a control period of normal visibility (either one week earlier or one 

week later) were removed. Both matches were removed if either the control or the test period 

included a state or national holiday or other day near the holiday when travel would be different 

from that of a typical day. If visibility is assumed to have no effect on crash frequencies, the 

number of crashes observed during the tested periods of reduced visibility should be equivalent 

to the number of crashes observed during the matched control period. 

SHRP2 RID CRASH DATA 

SHRP2 data consist of two databases: 1) RID, and 2) Naturalistic Driving Study (NDS). The 

RID contains crashes, roadway characteristics, and traffic volumes in the format of GIS layers 

from six states: Florida, New York, Washington, Pennsylvania, Indiana, and North Carolina. 

Crash records from 2010–2012 were acquired from the SHRP2 Florida RID data and included 

both the crash-level and vehicle-level fields. These data were merged to create a comprehensive 

dataset of crash variables. The recorded locations of the crashes were used to isolate the crashes 

to those occurring 5 miles within an airport, and the recorded times of the crashes were used to 

further reduce the crash dataset to those crashes occurring during a period of interest, whether 

during a test period of reduced visibility or a control period of normal visibility. Figure 2 shows a 

map graphically showing the airports, the 5-mile buffers, and observed crashes. 
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The raw crash data, compiled from law enforcement records and supplemented with roadway 

information from SHRP2, contain several fields that can be tested as variables. While the focus 

of this study is visibility, the influence of the road features and conditions at the time of the crash 

should be accounted for in studying how visibility impacts crash frequencies. There were several 

variables in the crash data that were often not reported. These variables were excluded from the 

analysis so efforts could be directed at the variables that were consistently reported.  

 
Figure 2. Airports, Buffer Areas, and Crashes in Florida. 

 

Table 2 shows descriptive statistics of the variables that were tested. The information in Table 2 

shows how often a particular variable category is observed in the crash records during a control 

period (excellent visibility) or one of the test periods (medium visibility or poor visibility). From 

the descriptive statistics, for example, 16.6 percent of crashes in excellent visibility occur when 

the maximum speed (speed limit) is 45 to 60 mph. Crashes increased to 19.7 percent when 
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visibility is poor. For injury severity, there appears to be an increase in the percentage of crashes 

that were recorded as injury crashes, from nearly 48 percent of crashes in excellent visibility to 

50 percent in poor visibility. The percentage of crashes reported as property damage only 

decreases from over 51 percent in excellent visibility to less than 49 percent in poor visibility. 

This suggests that crash severity is likely to increase as visibility decreases. The analyses that 

follow are able to account for other variables to test that observation. 

 

Table 2. Descriptive Statistics. 
 Percentage of Crashes  Percentage of Crashes 

Category 
Excellent 

Visibility 

Medium 

Visibility 

Poor 

Visibility 
Category 

Excellent 

Visibility 

Medium 

Visibility 

Poor 

Visibility 

Functional Class    Facility Type    

Rural major collector 0.02% 0.01% 0.00% Divided 67.21% 69.08% 69.69% 

Rural minor arterial 0.17% 0.17% 0.14% Undivided 31.42% 29.54% 29.33% 

Rural principal arterial 0.82% 0.79% 0.75% Unknown 1.36% 1.39% 0.98% 

Urban collector 0.57% 0.60% 0.23% Skid Number    

Urban local 0.01% 0.01% 0.00% 20–30 6.90% 7.80% 7.81% 

Urban minor arterial 21.22% 18.71% 18.62% 30–40 67.73% 67.46% 65.39% 

Urban other principal  53.91% 53.48% 56.69% 40–50 20.24% 19.27% 21.05% 

Urban principal arterial  19.71% 22.09% 19.93% > 50 1.23% 0.83% 1.22% 

Unknown 3.57% 4.14% 3.65% Unknown 3.91% 4.65% 4.54% 

Maximum Speed (mph)     Lighting Condition        

0–30 7.89% 7.55% 7.76% Dark(No Street light) 3.42% 3.02% 5.75% 

30–45 65.24% 61.73% 62.82% Dark(Street Light) 28.29% 23.34% 38.63% 

45–60 16.62% 18.52% 19.74% Dawn/Dusk 5.01% 4.87% 6.22% 

>60 10.25% 12.20% 9.68% Daylight 63.29% 68.77% 49.39% 

AADT (vpd)       Number of Vehicles       

0–9999 3.76% 3.66% 3.41% Multi-Vehicle 92.31% 91.66% 91.25% 

10,000–34,999 35.08% 33.46% 35.08% Single Vehicle 7.69% 8.34% 8.75% 

35,000–54,999 30.92% 30.14% 30.92% Severity       

55,000–124,999 16.47% 18.03% 16.79% Fatal 0.90% 0.56% 0.98% 

>124,999 12.85% 13.81% 12.96% Injury 47.96% 47.14% 50.09% 

Unknown 0.92% 0.91% 0.84% No Injury 51.14% 52.30% 48.92% 

Percentage of Trucks     Driver Age       

0–5 58.91% 56.90% 60.62% 15–19 6.24% 6.58% 6.74% 

5–10 35.19% 36.25% 32.32% 20–29 26.14% 26.10% 27.08% 

10–20 5.75% 6.55% 6.78% 30–39 19.78% 18.70% 19.27% 

>20 0.15% 0.30% 0.28% 40–49 18.63% 18.28% 18.29% 

Avg. Shoulder Width (ft.)     50–59 15.56% 13.89% 12.96% 

0.00–1.00 39.41% 38.73% 40.74% 60–69 8.37% 7.94% 7.39% 

1.01–3.00 16.67% 15.88% 15.34% > 70 5.19% 4.84% 4.07% 

3.01–5.00 12.44% 11.22% 11.46% Unknown 0.09% 3.68% 4.21% 

5.01–10.00 23.72% 26.00% 25.12%     

> 10.00 6.19% 7.35% 6.50%     

Unknown 1.57% 0.83% 0.84%      
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MULTICOLLINEARITY CHECK 

The variance inflation factor (VIF) is used to detect collinearity (strong correlation between two 

or more predictor variables) that causes instability in parameter estimation in regression models. 

VIF can be defined as: 

𝑉𝐼𝐹 = 1/(1 − 𝑅𝑖
2) (1) 

Where: 

𝑅𝑖
2 = co-efficient of determination of ith variable on all other variables. 

 

A general rule of thumb for multicollinearity is to check whether VIF is greater than 10. No 

variable has a VIF value greater than 10 in the final dataset. The correlation values of Lighting, 

Weather, and Number of vehicles are closer to 1, suggesting that these variables have strong 

linear relationship with at least one other variables among these three variables.  

VARIABLE IMPORTANCE 

The research team used a random forest algorithm assess variance importance using a package 

with the R statistical software (Liaw and Wiener, 2002). With random forest algorithms, a 

randomly selected vector of input variables (𝑿 = 𝑋1, … , 𝑋𝑛) to a random response variable 𝑌 ∈

𝕪 is considered for analysis. The importance of a variable 𝑋𝑘 while predicting or estimating 𝑌 is 

calculated by the Gini index, calculated from adding the impurity decreases in the following 

equation: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑋𝑘) =
1

𝑁𝑇
∑ ∑ 𝑝(𝑡). 𝑑

𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑘𝑇

 (2) 

where: 

t= node. 

T= all nodes. 

𝑝(𝑡) = proportion 𝑁𝑡 ∕ 𝑁 of sample for node 𝑡.  

𝑠𝑡 = split for which all variables are sampled into two major nodes 𝑡𝐿 and 𝑡𝑅 to maximize 

the decrease, 𝑑. 

𝑣(𝑠𝑡) = variable used in split 𝑠𝑡. 

𝑑 = 𝑖(𝑡) − 𝑝𝐿𝑖(𝑡𝐿) − 𝑝𝑅𝑖(𝑡𝑅) = decrease. 

𝑁𝑇 = all variables. 

 

If the Gini index is considered an impurity function, the measurement is known as Mean 

Decrease Gini. Variables with higher values of Mean Decrease Gini are considered more 

important to the model. Figure 3 shows the variable importance plot for the selected variables. 

Each variable is shown on the y-axis and variable importance on the x-axis. The variables on the 

y-axis are ordered from most to least important.  
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Figure 3. Variable Importance from Random Forest Algorithm. 

 

SELECTED VARIABLES 

Seven variables were selected for testing in models based on values of VIF, correlation, and 

Mean Decrease Gini. The selected variables are: 

 AADT. 

 Driver Age. 

 Percentage of Trucks. 

 Skid Number. 

 Average Shoulder Width. 

 Maximum Speed. 

 Crash Severity. 

Histograms of the first six of these variables are shown in Figure 4, divided by crashes occurring 

in the three visibility groups. The distributions appear to be quite similar for all variables. The 

percentage in each of the groups indicates relative percentages of the attributes in that particular 

group. The most notable differences are for skid number and driver age where there are peaks in 

the distributions for excellent visibility that are not seen in the other visibility levels. 
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Figure 4. Histogram of Key Variables. 
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MODEL DEVELOPMENT WITH ORDINAL LOGISTIC REGRESSION 

The research team used ordinal logistic regression to perform the analysis. The ordinal logistic 

regression models are also known as cumulative link models. In this analysis, the response 

variable is the visibility score. Three ordinal response categories are considered: excellent 

visibility, medium visibility, and poor visibility. A cumulative link model will be developed 

based on the ordinal response variable, for example, 𝑌𝑖 with 𝑘 = 1, … , 𝐾 categories [where 𝐾 ≥

2]. Then 𝑌𝑖 follows a multinomial distribution with parameter 𝜋. The cumulative probabilities 

can be defined as:  

𝑌𝑖𝑘 = 𝑃( 𝑌𝑖 ≤ 𝑘) = 𝜋𝑖1+. . . +𝜋𝑖𝑘 (3) 

Where: 

𝜋𝑖𝑘 = probability of 𝑖𝑡ℎ observation for response category 𝑘.  

 

The cumulative logistic function is: 

𝑙𝑜𝑔𝑖𝑡(𝑦𝑖𝑘) = 𝑙𝑜𝑔𝑖𝑡(𝑃( 𝑌𝑖 ≤ 𝑘)) = log [
𝑃( 𝑌𝑖 ≤ 𝑘)

1 − 𝑃( 𝑌𝑖 ≤ 𝑘)
] 𝑤ℎ𝑒𝑟𝑒: 𝑘

= 1, … , 𝑘 − 1 

(4) 

 

Note that the logit functions are defined as logit(𝜋) = log [
𝜋

1−𝜋
]. A cumulative link with a logistic 

link can be written as: 

𝑙𝑜𝑔𝑖𝑡(𝑦𝑖𝑘) =  𝜃𝑘 − 𝑋𝜇 
(5) 

 

Where: 

𝜃𝑘  = parameters act as intercepts or horizontal displacements. 

𝑋 = transpose of a vector of predictor variables for the 𝑖𝑡ℎ observation. 

𝜇 = matching set of regression parameters.  

 

𝑋𝜇 is dependent on 𝑘 categories. Therefore, it is considered that 𝜇 has the same effect for each of 

the 𝐾 − 1 cumulative logits. The odds ratio (OR) of the event 𝑌(≤ 𝑘) at 𝑥1 relative to event 𝑌(≤

𝑘) at 𝑥2 is: 

  

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑂𝑅) =

𝑦𝑘(𝑥1)
[1 − 𝑦𝑘(𝑥1)]

𝑦𝑘(𝑥2)
[1 − 𝑦𝑘(𝑥2)]

=
𝑒𝑥𝑝(𝜃𝑘 − 𝑋𝜇)

𝑒𝑥𝑝(𝜃𝑘 − 𝑋𝜇)
= 𝑒𝑥𝑝[(𝑥2

𝑇 − 𝑥1
𝑇)𝜇] (6) 
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Here, the odds ratio is independent of 𝑘. Thus, the cumulative odds ratio is proportional to the 

distance between 𝑥1 and 𝑥2. Therefore, the cumulative logit model is also known as proportional 

odds model. The analysis was performed with open source statistical software (R Development 

Core Team, 2013; Christensen, 2016). Table 3 lists the values of the estimates of the first model. 

The first part of the outputs lists the regression coefficient values, standard errors, and p- values. 

By observing the p-values, it is found that maximum speed, skid number, and driver age have 

higher significance, and severity and AADT have somewhat significance. One reason is that the 

impact of AADT is not highly significant in the model, as it is not considered in log scale. The 

2.5 percent and 97.5 percent confidence interval values of these variables do not contain zero, 

which is also a good indicator of significance. The next part of Table 3 lists the estimates for the 

two intercepts (intercept between excellent visibility and medium visibility and intercept 

between medium visibility and poor visibility) to form three response categories. The intercepts 

indicate where the latent variable is cut to make the ordered subdivision in visibility score. The 

final part of the outputs provide −2𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 of the model and the AIC value, used later for 

model selection. 

Table 3. Estimates from Ordinal Cumulative Link Model (Model 1). 

Variables and Statistical  

Measures 

Combined   

Estimate 2.50% 97.50% St. Er. z Pr(>|z|) Significance 

Variables               

Severity: Injury 0.265 -0.032 0.562 0.152 1.750 0.080 . 

Severity: NoInjury 0.263 -0.034 0.560 0.151 1.736 0.083 . 

Maximum Speed 0.008 0.004 0.012 0.002 4.048 0.000 *** 

AADT 0.000 0.000 0.000 0.000 -2.536 0.011 * 

Skid Number -0.006 -0.010 -0.003 0.002 -4.209 0.000 *** 

Percentage of Trucks 0.001 -0.008 0.010 0.005 0.197 0.844   

Avg. Shoulder Width 0.003 -0.007 0.013 0.005 0.536 0.592  

Driver Age -0.006 -0.007 -0.004 0.001 -7.273 0.000 *** 

Intercepts               

Visibility: Excellent | Medium 0.124   0.171 0.722   

Visibility: Medium| Poor 2.462     0.172 14.305     

Statistical Measures              

AIC 43888.17 

Log likelihood -21934.08 

Maximum Gradient 6.38E-07 

Conditional H 4.60E+12 

Note: p < 0.10, *: p < 0.05, **: p < 0.01, ***: p < 0.001 

 

The research team developed another model (model 2) by omitting percentage of trucks and 

average shoulder width, because both of these factors were insignificant in Model 1. Table 4 

compares the two models. The p-value of the test is 0.836, meaning that the Model 2 is not 
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significantly different from Model 1. As Model 2 is not significantly different from Model 1, the 

research team used Model 1 as the final model.  

Table 4. Model Comparison. 

Variables  AIC loglikehood LR Stat Pr (> Chisq) 

Model 2 43885 -21934   

Model 1 43888 -21934 0.3582 0.836 

 

ODDS RATIOS 

The interpretation of proportional odds ratios in cumulative link models is same as the odds 

ratios from a binary logistic regression model. Table 5 lists the odds ratio of the variables for the 

comparison of poor visibility to excellent and medium visibility. For injury crashes, the odds of 

injury severity in poor visibility versus medium visibility or excellent visibility combined is 

1.304, indicating a 30 percent greater chance of a crash resulting in injury during poor visibility 

(assuming all other variables are held constant). For continuous variables, the odds ratio 

indicates the change in likelihood of a poor visibility crash for each unit change in the listed 

variable. For the maximum speed (odds ratio is 1.008 per 5 mph), the probability that the 

visibility at the time of the crash is poor (instead of medium or excellent visibility) increases 

1.008 times higher for each 5 mph increase in speed. The odds ratio for skid number indicates 

there is a decrease in the likelihood of a poor visibility crash for increases in skid number. The 

odds ratio for AADT is 1, which indicates that the effect of AADT is negligible when 

considering the effect of visibility on crashes. 

Table 5. Odds Ratios for Model Variables. 

Variables  Odds Ratio 

Severity: Injury 1.304 

Severity: No Injury 1.301 

Maximum Speed 1.008 (per 5 mph) 

AADT 1.000 (per 10,000 vpd) 

Skid Number 0.994 (per 5 units of skid resistance) 

Percentage of Trucks 1.001 

Average Shoulder Width 1.002 

Driver Age 0.994 (per 10 years of age) 

 

 

CRASH PROBABILITIES BY VISIBILITY LEVEL 

Using the model results, the probabilities of a crash with a specific visibility level are plotted in 

Figure 5, divided by the injury severity and independent variable. Plots for four independent 

variables are shown (the variables shoulder width and percentage of trucks are not shown as they 
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were not significant in the original model). These plots can be used to examine how the 

probability that a particular visibility level is represented in the crash data changes as each 

independent variable changes. 

 
Figure 5. Probability of Occurrence for Different Variable Levels. 
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In Figure 5a, there were not enough crashes to identify a connection between maximum speed 

and visibility level for fatal crashes. However, as the maximum speed increases, there is a 

decrease in the likelihood that an observed crash occurred in excellent visibility compared to 

medium and poor visibility for both the injury and no injury crashes. There appear to be no 

common trends for AADT in Figure 5b, but Figure 5c suggests that increases in measured 

friction lead to crash reductions in medium and poor visibility. The probability that a crash from 

the dataset is coded as occurring in medium and poor visibility decreases while the probability 

for excellent visibility increases. This happens for all severity levels. Finally, driver age is shown 

as affecting the crash probabilities for all severity levels as well. The probability for a crash 

occurring in medium and poor visibility decreases compared to that of excellent visibility as age 

increases. This should not be surprising as drivers are less likely to drive in inclement weather as 

they age. 

FINDINGS 

This study evaluated several of the factors that influence crashes during reduced periods of 

visibility during inclement weather. While previous research confirms that driver behavior 

changes during inclement weather, it is clear that there remain safety concerns due to reduced 

visibility. Unless technology is able to adapt to the conditions drivers regularly drive in and 

overcome the limitations that human drivers have, the crash patterns are likely to continue with 

the same effects identified in this study. Ahmed et al. (2014) were unable to connect roadway 

geometry and traffic to models that identify effects of visibility conditions. The findings of this 

study concur that there is difficulty finding geometric or traffic effects when focusing on 

visibility. Shoulder width and truck percentage were not significant effects, and AADT has small 

consequence. The variables that appear most interesting are skid number and driver age, 

suggesting that higher friction reduces crashes in inclement weather and the old drivers are less 

likely to be in crashes in inclement weather. Moreover, higher speed is associated with fatal and 

injury crashes during reduced visibility conditions. 

The findings suggest that drivers are less likely to be involved in a crash during poor visibility 

conditions, as they get older. This is not surprising as older drivers are likely to apply caution 

and simply not drive in inclement weather (Office of the Aging, 2015). A large part of the 

reduced traffic volumes in inclement weather as observed by Bartlett et al. (2013) is likely to 

first come from the older drivers that tend to be more cautious, as suggested by Abdel-Aty et al. 

(2011). 

One limitation of the current study is the less availability of more comprehensive data like NDS 

data, curve characteristics, roadway marking, and roadway signage data. Future researchers may 

choose additional constructs and related variables to further examine the effect of inclement 

weather. 
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CHAPTER 4: NON-PARAMETRIC MODEL ON INCLEMENT WEATHER 

CRASHES 

Many factors could be associated with an inclement weather crash. Since the objective of this 

study is to determine if there is an association between crash risk and driving in inclement 

weather conditions, select variables from past research were considered in the analysis. One of 

the major tasks in highway safety analysis is the identification of the key contributing factors for 

different types of crashes. MCA, a popular non-parametric tool, is a dimensionality reduction 

method to describe the significance of co-occurrence of groups of variables or variable 

categories from a big dataset. It is also referred to as the pattern recognition method that treats 

arbitrary datasets as combination of points in a larger dimensional space. It uniquely simplifies 

complex data into knowledge extraction in a completely different way than parametric estimation 

does (Das and Sun, 2016). 

The objectives of using MCA in this study were: (1) to identify the relative closeness of the key 

association factors and (2) to identify significant knowledge patterns. The findings of this study 

could help authorities to determine effective and efficient crash countermeasures. 

MULTIPLE CORRESPONDENCE ANALYSIS 

French Statistician Jean-Paul Benz´ecri (Roux and Rouanet, 2010) introduced the idea of MCA 

in 1970. This method has similarities with Principal Component Analysis (PCA) and Factor 

Analysis, two well-documented multivariate statistical methods. PCA mainly deals with 

numerical data, and MCA is a familiar tool for multidimensional categorical data. 

The concept of MCA has been improved many times under different frameworks while keeping 

the goals similar (De Leeuw, 1973: Hoffman and De Leeuw, 1992). Limited number of 

transportation engineering related studies used MCA. Hoffman and De Leeuw (1992) associated 

different vehicle models with crash severities by using MCA. Fontaine (1995 performed MCA 

on one year of pedestrian crash data to determine the statistical proximity of the key variables. 

Factor et al. (2010) applied MCA in determining the association between driver’s social 

characteristics and their involvements in crash related injuries. This study exposed new facets in 

the social organization of fatalities. Das and Sun (2015) used eight years (2004–2011) of 

pedestrian crash data in Louisiana to determine key associations between risk factors. Das and 

Sun (2016) applied MCA on eight years (2004–2011) of fatal run-of-road crashes in Louisiana to 

examine the degree of association between risk factors. The finding revealed some specific factor 

groups that require careful attention from the safety professionals. 

MCA is a non-parametric learning algorithm. In MCA, one does not need to distinguish between 

explanatory variables and the response variable. It requires the construction of a matrix based on 

pairwise cross-tabulation of each variable. For example, the dimension of the final dataset of a 
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study is: 𝐴 × 𝑏. For a table of qualitative or categorical variables with dimension 𝐴 × 𝑏, MCA 

can be explained by taking an individual record (in row), i [i= 1 to A], where b categorical 

variables (represented by b columns) have different sizes of categories. MCA can generate the 

spatial distribution of the points by different dimensions based on these b variables. For 

theoretical details, readers can consult related studies (Roux and  Rouanet, 2010; Das et al., 

2015; Das et al., 2016a, Das et al., 2017a). 

Let P be the number of variables (i.e., columns) and I is the number of transactions (i.e., rows). 

This will generate a matrix of I multiplied by P. If Lp is the number of categories for variable p, 

the total number of categories for all variables can be expressed as  


P

p pLL
1

. In matrix I 

multiplied by L, each of the variables will contain several columns to show all of their possible 

categorical values.  

The cloud of categories is considered as a weighted combination of J points. Category j is 

represented by a point denoted by Cj with weight of nj. For each of the variables, the sum of the 

weights of category points is n. In this way, for the whole set J the sum is nP. The relative 

weight wj for point 
jC  is wj = nj/(nP) = fj/P. The sum of the relative weights of category points 

is 1/P, which makes the sum of the whole set as 1. 
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Here, jjn   represents the number of individual records, which have both categories k and k  . The 

squared distance between two categories 
jC  and 
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The numerator of Equation (4) is the number of individual records associating with either j or j  

but not both. For two different variables, p and p , the denominator is the familiar theoretical 

frequency for the cell (j, j ) of the pp JJ   two-way table. 

Figure 6 shows a representation of the cloud generation for combination of categories. In this 

figure, three variables are considered. Variable A has three categories (A1, A2, and A3), variable 

B has four categories (B1, B2, B3, and B4), and variable C has six categories (C1, C2, C3, C4, C5, 

and C6). The categories are plotted in the MCA plot representing their relative proximity on the 

two-dimensional space. The plot shows a distinct cloud (red ellipse) associated with A2, B1, C2, 

and C6. This cloud is created based on the proximity of the coordinates of these four categories. 
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Figure 6. MCA Plot Different Categories (Das et al., 2017a). 

 

DATA COLLECTION AND ANALYSIS 

To accomplish the objectives of this study, the research team examined the influence of 

significant variables by conducting a systematic literature review. Florida and Washington RID 

do not have all of the required variables to examine. This study used MCA for two reasons: 

 Conventional statistical models require assumptions. Deviation from the assumptions will 

make the research findings biased and trivial. As a non-parametric method, MCA does 

not need to consider any prior assumptions, so the findings from MCA are unbiased. 

 Identification of key associations is difficult to measure in statistical modeling. This 

study also considers additional variables listed in Washington RID to perform a robust 

analysis on inclement weather crashes. 

This study used five years (2009–2013) of Washington RID to perform this analysis. After 

conducting variable importance (as performed in Chapter 3), a final list of nine variables were 

selected. Table 6 provides descriptive statistics of the key variables for both non-inclement and 

inclement weather crash datasets.  
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Table 6. Descriptive Statistics of the Key Factors. 

  Percentage of Crashes   Percentage of Crashes 

Category 

Non-

inclement 
Inclement 

Category 

Non-

inclement 
Inclement 

Weather Weather Weather Weather 

Functional Class     Location   

Interstate 47.89% 53.90% Urban 82.94% 82.80% 

Principal Arterial 37.92% 33.62% Rural 17.06% 17.20% 

Minor Arterial 11.28% 10.07% Alignment     

Collector 2.86% 2.40% Straight & Level 68.01% 60.93% 

Local 0.04% 0.01% Straight & Grade 18.99% 22.85% 

Lighting     Curve & Level 5.55% 6.12% 

Daylight 75.96% 61.04% Curve & Grade 5.48% 7.66% 

Dark-Street Lights On 
13.13% 22.54% 

Straight at Hill 

crest 
0.69% 0.78% 

Dark-No Street Lights 6.57% 9.68% Straight in Sag 0.52% 0.63% 

Dawn/Dusk 3.60% 5.72% Curve in Sag 0.20% 0.29% 

Dark-Street Lights Off 
0.42% 0.60% 

Curve at 

Hillcrest 
0.15% 0.23% 

Other 0.32% 0.42% Other 0.40% 0.51% 

Road type   Driver Gender     

Two Way - Undivided 44.31% 44.60% Male 53.16% 60.93% 

Two Way - Divided, with 

Barrier 39.15% 
39.69% 

Female 
43.18% 

42.65% 

Center-Two Way Left Turn 

Lane 7.31% 
6.43% 

Not included 
3.66% 

3.97% 

One Way 2.81% 2.25% Driver Age     

Two Way - Divided, no 

Barrier 1.96% 
2.36% 

15–24 
25.79% 26.76% 

Driveway 1.68% 1.44% 25–34 21.17% 22.15% 

Interchange Ramp 1.21% 1.58% 35–44 16.59% 16.71% 

Reversible Road 0.27% 0.36% 45–54 15.97% 15.72% 

Alley 0.01% 0.00% 55–64 11.70% 11.30% 

Other 1.29% 1.28% 65–75 5.66% 4.85% 

Posted Speed (mph)   > 75 3.12% 2.52% 

0–40 41.25% 36.43% Driver Severity     

41–50 12.99% 13.05% PDO 65.72% 64.40% 

51–60 41.12% 45.43% Injury 41.53% 35.50% 

61–70 4.64% 5.09% Fatal 0.64% 0.46% 
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Graphical representations in MCA help to interpret data in a convenient way as they effectively 

summarize large, complex datasets by simplifying the structure of the associations between 

variable categories with a relatively simple view of the data. MCA analyzes the rows and 

columns of a dataset while treating them as high-dimension geometry elements. It shows the co-

occurrence of the categories in a lower dimensional space where proximity in the space 

potentially indicates meaningful associations among the categories of different variables. A 

larger distance indicates a distant association. If the distance for a particular category is very far 

away from the centroid, it indicates that such category is different from the average profile. Each 

of the categories is independent in principle and a co-occurrence based on weight proximity (by 

associating certain categories together in a cloud) tends to form a complete picture of certain 

scenarios. A percentage distribution for a single category conveys little meaning in many cases, 

but when combined with other categories due to the proximity in the space, various implications 

can be potentially interpreted (Das et al., 2017a). 

Table 7 shows the percentages of variance explained by the top 10 dimensions. The first 

principal axis explained 6.05 percent of the principal inertia; the second principal axis explained 

4.64 percent for non-inclement weather crashes. For inclement weather crashes, these 

percentages are 6.14 percent and 4.74 percent, respectively. These percentages are calculated 

based on the eigenvalue (a value in between 0 and 1). Dimension with larger variance has a 

higher eigen-value magnitude. First two dimensions explain around 11 percent of variance, and 

none of the remaining major dimensions explain more than 2.88 percent. As the first plane 

associated dimension 1 and dimension 2 represented the largest inertia, the remaining analysis 

was based on this plane. A complete list of the percentage of variance is provided in the 

Appendix (Table 8 and Table 9). 

Table 7. Percent Variance Explained in Top 10 Dimensions. 
              

Dimension 

Non-inclement Weather Inclement Weather 

Eigenvalue 

Percent 

of 

Variance 

Cumulative 

percent of 

Variance 

Eigenvalue 

Percent 

of 

Variance 

Cumulative 

percent of 

Variance 

Dimension 1 0.269 6.047 6.047 0.273 6.140 6.140 

Dimension 2 0.206 4.642 10.689 0.210 4.736 10.876 

Dimension 3 0.128 2.880 13.569 0.127 2.868 13.744 

Dimension 4 0.124 2.795 16.364 0.124 2.795 16.538 

Dimension 5 0.121 2.730 19.094 0.121 2.732 19.270 

Dimension 6 0.120 2.696 21.790 0.119 2.680 21.950 

Dimension 7 0.118 2.649 24.439 0.118 2.657 24.608 

Dimension 8 0.116 2.615 27.055 0.117 2.626 27.234 

Dimension 9 0.114 2.573 29.627 0.115 2.593 29.826 

Dimension 10 0.114 2.559 32.186 0.115 2.584 32.411 
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The contribution of the variables depends on its number of categories, whereas the contribution 

of a category depends on the number of occurrences. This study used open source R software 

package FactoMineR to perform MCA (Le et al., 2008). This package also produces related 

graphics from the analysis. The research team used two other visualization packages ggplot2 and 

ggrepel to develop MCA plot shown in Figure 7–Figure 10 (Wickham, 2009; Slowikowski, 

2016). The flexibility of functions in these two packages makes the graphics neat and easy to 

interpret. The research team used similar combination number (for example, Cloud 1a for non-

inclement weather crashes, and Cloud 1b for inclement weather crashes) to compare the results 

effectively. Descriptions of these combination clouds are: 

 Cloud 1 (Cloud 1a and Cloud 1b): Cloud 1a consists of three attributes: Rural-Fatal-

Curve at Hill Crest and Cloud 1b consists of Rural-Fatal-Dark No Lighting at Night. Due 

to high speed, rural roadway crashes are usually more severe in nature. This cloud 

indicates that dark with no lighting was a significant factor for inclement weather crashes. 

Other studies (Naik et al., 2016; El-Basyouny et al., 2014b; Wei et al., 2017) showed 

similar findings. 

 Cloud 2 (Cloud 2a and Cloud 2b): Cloud 2a has four attributes. The attributes in this 

cloud are: Curve and level-Curve and grade- Curve in sag- Interchange ramp. Cloud 2b 

has all alignment related attributes. These are Curve and level-Curve and grade-Curve in 

Hillcrest- Curve in sag- Interchange ramp. Cloud 2 indicates that curve roads were risky 

irrespective of weather condition. Moreover, ramps are found associated with non-

inclement weather crashes. Similar findings were found in other studies (Yu et al., 2015; 

Yu and Abdel-Aty, 2014; Kopelias et al., 2007; Wei et al., 2017). 

 Cloud 3 (Cloud 3a and Cloud 3b): Both Cloud 3a and Cloud 3b consist of four attributes: 

Minor Arterial-Posted speed (41–50 mph)-Two way undivided roadways-Older drivers. 

This combination clearly indicates particular age groups faced difficulty for certain 

roadway properties.  

 Cloud 4 (Cloud 4a and Cloud 4b): The attributes in cloud 4a are: Principal Arterial-

Alley-Driveway-Two way undivided with no Barrier- Lower posted speed. Cloud 4b has 

attributes like Principal Arterial-Local-Driveway - Lower posted speed. This cloud 

indicates that driving during inclement weather was risker in the presence of higher 

number of driveways. 
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Figure 7. MCA Plot for Non-inclement Weather Crashes. 

 

Figure 8. MCA Plot for Inclement Weather Crashes. 
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Figure 9. MCA Plot for Non-Inclement Weather Crashes (Center Zoomed). 

 

 Cloud 5 (Cloud 5a and Cloud 5b): Both Cloud 5a and Cloud 5b consist of four attributes: 

Posted speed (51–60 mph)-Interstate-Two way divided roadway with Barrier. This 

combination indicates that two lane instate roadways separated with barrier were 

associated with higher number of crashes. 

 Cloud 6 (Cloud 6a and Cloud 6b): Cloud 6a associates driver age and severity with 

lighting condition. This cloud is consisted of four attributes: Driver age (15–24, 55–64 

years)-Injury-Other types of Lighting. On the other hand, Cloud 6b for inclement weather 

crashes contains only age groups in the combination group. It shows that younger and 

older drivers were disproportionately involved in inclement weather crashes. Naik et al. 

(2016) also found that young driver indicator was statistically significant in inclement 

weather crashes.  

 Cloud 7 (Cloud 7a and Cloud 7b): Cloud 7a combines five attributes: Driver age (45–54 

years)-Female-PDO-Straight aligned-Daylight. Cloud 7b has six attributes: Driver age 

(45–54 years)-Female-PDO and Injury -Daylight and other types of Lighting. This cloud 

indicates that a certain age group of female drivers was disproportionately involved in 

crashes. 
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Figure 10. MCA Plot for Inclement Weather Crashes (Center Zoomed). 

 

LIMITATIONS 

A graphical display like MCA plot is useful as it shows multifaceted associations involving 

many factors into a lower dimensional space. One disadvantage of MCA is that it fails to 

quantify any significance test for the cloud groups. Other cluster techniques like K-means 

clustering and principle component analysis (PCA) have similar strengths and disadvantages as 

the MCA (Das et al., 2016a , Das et al., 2017a). Future research can improve the findings of 

MCA by connecting it statistical models like log-linear and risk models. Another limitation is 

that the study findings are based on the first plane that explained only 11 percent of the data 

inertia. Inclusion of more dimensions can potentially increase the number of association patterns 

underlying the dataset. 

FINDINGS 

MCA is useful in presenting proximity map of the variable categories in a low dimensional plane 

by revealing the main features from a multidimensional dataset. This study used MCA on five 

years (2009–2013) of crash data in Washington. Systematic literature review of the past studies 
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was used to identify the key variables. The key groups of confluence of factors in inclement 

weather crashes found in this research are the following: 

 Older drivers face difficulty in certain roadway characteristics (two way undivided 

arterial roadways with posted speed 41–50 mph) during inclement weather. 

 Rural roadways are more involved in fatal crashes. For inclement weather, rural 

roadways with no lighting at dark are more risky. 

 Roadways with curves are risky irrespective of weather condition.  

 Younger and older drivers seem to appear as a meaningful factor by itself for inclement 

weather crashes. 

 Interstate two lane roadways with barriers are always more likely to be involved with 

crashes.  

Results from this study could help transportation agencies improve conventional warning 

systems and countermeasures for inclement weather driving. 
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CHAPTER 5: ANALYSIS ON CRASH NARRATIVES 

Police reported crash report contains a final narrative of a crash occurrence. It explains how the 

crash happened. These narrative descriptions usually elaborate on the coded variables. The 

research team envisioned to use the crash narratives of inclement and non-inclement weather 

crashes to clarify the range and nature of events under each condition. To obtain further insight 

into the inclement weather crashes, this study extracted and analyzed crash narrative data 

(SHRP2 InSight, 2016). 

TEXT MINING 

 

Text data usually lack any formal structure. Moreover, text data contain a significant amount of 

redundant words, prepositions, conjunctions, and punctuations. Sophisticated data mining tools 

are required to perform text analysis. Text mining is an applied method originated from data 

mining or knowledge discovery. This method is used to identify effective, original, potentially 

useful, and ultimately comprehensible patterns in unstructured textual data. Knowledge 

Discovery in Text can be viewed as a multistage process that comprises all activities from 

document collection to knowledge discovery. It uses approaches like data mining, information 

retrieval, supervised and unsupervised machine learning, and computational semantics. 

Extraction of useful information from data resources through pattern recognition helps 

identifying contributing factors in associated task. In text mining, corpus represents a collection 

of text documents. After developing a corpus, it is important to clean the data by removing 

redundant words, numbers, and particular parts of speech.  

SHRP2 INSIGHT 

SHRP2 InSight (screenshot of InSight data access website is shown in Figure 11) contains the 

following data components: 

 Information describing the 3,400+ drivers and vehicles that participated in the NDS. 

 More than 5,400,000 trip summary records that describe individual trips recorded during 

the study. 

 SHRP2 NDS status information including data collection and processing progress. 

 More than 36,000 crash, near-crash, and baseline driving events.  

 Background information about the project and the data being collected. 

 Discussion forums for questions about the project and available data. 

 



 

 

 32 

 
Figure 11. Screenshot of SHRP2 NDS InSight Home Page. 

 

 

CRASH NARRATIVES FROM SHRP2 INSIGHT 

There is limited amount of research conducted on crash narrative analysis. Stutts et al. (2001) 

used two years of NASS Crashworthiness Data System crash narratives to identify additional 

information on distracted driving. Fitzpatrick et al. (2017) investigated speeding-related crash 

designation through crash narrative reviews sampled via logistic regression.  

To perform text mining, final narratives from SHRP2 InSight crashes were manually extracted. 

Samples of these crash narratives are listed in the Appendix (Table 12, Table 13, and Table 14). 

The objective of crash narrative analysis in this study was to perform text mining and develop 

topic models. The research team used structural topic modeling (STM) to develop the topic 

models. This method requires both narrative and supportive metadata to develop relevant topic 

models. A database of 100 crash narratives was manually extracted from SHRP2 Insight. Around 

20 percent of the data contain final narratives of inclement weather. Figure 12 illustrates the most 

frequently cited terms found in the combined corpus from each group of crash narratives. The 

terms ‘driver,’ ‘lane,’ ‘intersection,’ ‘brake,’ and ‘light’ are found as the most frequent terms in 

both of the datasets. For inclement weather crash narratives, ‘rain/snow’ and ‘wet’ are found in 

the top 10 most frequent terms.  
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Figure 12. Most Frequent Terms. 

 

COMPARISON WORD CLOUDS 

A word cloud is the most convenient way of visualizing the most frequent terms in unstructured 

documents. The more frequently a word appears, the larger would be the text size (Ignatow and 

Mihalcea, 2016). This study developed comparison word clouds to visualize the research trends 

over time. If 𝑝𝑥,𝑦 is the rate at which word 𝑥 occurs in document 𝑦, and 𝑝𝑦 is the average rate 

across documents (
∑ 𝑝𝑥,𝑦𝑦

𝑛
), where n is the number of documents. In comparison clouds, the size 

of each word is mapped to its maximum deviation (𝑚𝑎𝑥𝑦(𝑝𝑥,𝑦 − 𝑝𝑦)), and its angular position is 

determined by the document in which that maximum occurs (Das et al., 2016b). Figure 13 shows 

comparison word cloud for non-inclement crash narratives. Different color denotes different 

states, for example, words in green color indicate that these words are extracted from Florida 

non-inclement crash narratives. Texts with larger fonts (for example, ‘stop,’ ‘driver,’ 

‘oncoming’) indicate that these words appeared in the crash narratives more frequently. Figure 

14 illustrates comparison word clouds for inclement weather crashes. Relevant terms like ‘snow,’ 

‘rain,’ and ‘surface’ are noticed in this word cloud.  
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Figure 13. Comparison Word Cloud for Non-inclement Crash Narratives. 

 

 

Figure 14. Comparison Word Cloud for Inclement Crash Narratives. 
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STRUCTURAL TOPIC MODELING 

Topic models are extensively used in many branches of science to identify trends, patterns, and 

knowledge extraction. In transportation engineering, there is limited number of studies that used 

topic modeling. Das et al. (2016b) used Latent Dirichlet Allocation (LDA) to identify research 

trends by using several years of abstracts from Transportation Research Board Annual Meeting 

compendium papers. Das et al. (2017b) used STM on the same dataset to develop topic models 

by using document-level covariates.  

LDA lacks additional document-level information on which variation can be seen in different 

theoretical interests. Applying LDA and then performing a post-hoc evaluation of variation with 

a certain covariate of interest can be considered as a plausible solution. STM accommodates 

corpus structure through document-level covariates. The key idea behind STM is to specify the 

priors as generalized linear models through which one can weigh on arbitrary observed data. 

This directly allows an estimation of the quantities of interest in the unstructured textual contents 

(Roberts et al., 2016; Das et al., 2017b). 

Figure 15 shows three existing models used in the STM structure: the correlated topic model, the 

Dirichlet-Multinomial Regression topic model, and the Sparse Additive Generative topic model.  

 

Figure 15. Structural Topic Model (Source: Das et al., 2017b). 

The notations used for the theoretical part are: 

d ∈ {1 … . D}= index of the documents. 

n ∈ {1 … . N}= index of the tokens in the documents. 
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v ∈ {1 … . V}= index of a vocabulary of words. 

ωd,n = observed token (a conditionally independent drawn from v ∈ {1 … . V}). 

k ∈ {1 … . K}= index of topics. 

X= topic prevalence matrix with dimension D by P. 

Y= topic content matrix with dimension D by A. 

mv = baseline log-frequency of each word in the vocabulary. 

s, r, σ2, ρ= hyper parameters. 

 

Customization of a topic model to a particular dataset involves specifying a model for the linear 

predictors of topic prevalence (permits the expected document-topic proportions to vary by 

covariates) and/or topical content (parameterizes the distribution over words as deviations in log-

space from a corpus-wide baseline). STM uses a semi-collapsed variational Expectation-

Maximization (EM) algorithm to fit the model. Regularizing prior distributions are used to 

enhance interpretation and prevent overfitting. In the E-step, the joint optimum of the 

document’s topic proportions and the token-level assignments are solved. In the M-step, the 

global parameters are inferred that control the priors on topical prevalence and content (Roberts 

et al., 2016). This study used ‘maneuver information,’ ‘driver behavior,’ ‘event information’ as 

metadata to develop topic models. Figure 16 lists the corpus level visualization of the top topics 

from a 10-topic model from non-inclement crash narratives and the frequency of words in each 

of these topics. Topic 1 has high expected topic proportions. The theme of each topic is 

expressed by the three top words in each topic. For example, Topic 9 is related to signalized 

intersection. Similarly, Topic 3 indicates content related to rear end crashes at the intersections.  

 

Figure 16. Top 10 Topic Models for Non-inclement Crash Narratives. 
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Figure 17 lists the corpus level visualization of the top topics from a 10- topic model from 

inclement crash narratives and the frequency of words in each of these topics. Topic 3 shows 

higher expected topic proportions. The top 10 topic models contain ‘surface,’ ‘wet,’ and ‘rain.’ 

Higher presence of ‘wet’ and ‘surface’ indicate that these crashes are associated with lower 

surface friction due to the wet surface. For key themes emerge in these topic models: 1) friction, 

2) friction and lighting, 3) intersection, 4) signalized intersection, and 5) undivided roadways. 

 

Figure 17. Top 10 Topic Models for Inclement Crash Narratives. 

 

In addition, STM permits correlations between topics. Positive correlations between topics 

indicate that both topics are likely to be discussed within a document. Only one cluster is visible 

(cluster associated with Topic 8, Topic 5, and Topic 2) from the network plot generated from 

non-inclement crashes. Two separate clusters are found from inclement weather crash narratives. 

The first cluster is associated with six topic models (Topic 3, Topic 5, Topic 6, Topic 7, Topic 9, 

and Topic 10). The second cluster contains four topics (Topic 1, Topic 2, Topic 4, and Topic 8). 

The first cluster shows correlation between all of the friction related topics. The second cluster 

associates a relationship of intersection related topical contents. 
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Non-inclement Weather Crash Narratives 

 
Inclement Weather Crash Narratives 

Figure 18. Network Plots from the Topic Models. 

 

FINDINGS 

Identification of trends from text corpus is fundamental in most of the topic mining models. 

Mining the potential knowledge hidden inside unstructured textual content has been a popular 

research topic around the world, but limited research was conducted in the field of transportation 

engineering. In this study, the research team performed text mining on crash narratives collected 

from SHRP2 Insight. To develop document specific STM, this study used ‘maneuver 

information,’ ‘driver behavior,’ ‘event information’ as metadata. The developed top topic models 

for inclement weather crashes emerge five specific attention areas: friction, friction and lighting, 

intersection, signalization of intersection, and undivided roadways. The study provides a unique 

method to explore topical prevalence and topical content to identify additional information in the 

crash narratives. 
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CHAPTER 6: CONCLUSIONS 

The main objective of this study was to examine safety impacts of reduced visibility and 

associated factors during inclement weather driving. The research team performed a systematic 

literature review to determine the key factors associated with inclement weather related crashes. 

Two SHRP2 RID states, Florida and Washington, were selected for final analysis. This study 

used three methods: 1) parametric model (ordinal logistic regression) development to quantify 

visibility issues by using Florida SHRP2 RID, 2) non-parametric analysis (multiple 

correspondence analysis) to identify key associated factors for inclement weather crashes by 

using Washington SHRP2 RID, and 3) topic model development by analyzing inclement weather 

related crash narratives from SHRP2 Insight database. The key findings from this study are: 

 Higher friction reduces crashes in inclement weather, and old drivers are less likely to be 

in crashes in inclement weather.  

 Higher speed is associated with fatal and injury crashes during reduced visibility 

conditions. 

 Younger and older drivers seem to appear as a meaningful factor by itself for inclement 

weather crashes. 

 Older drivers face difficulty in certain roadway characteristics (two way undivided 

arterial roadways with posted speed 41–50 mph) during inclement weather. 

 Rural roadways are more involved in fatal crashes. For inclement weather, rural 

roadways with no lighting at dark are more risky. 

 Interstate two lane roadways with barriers are always more likely to be involved with 

crashes.  

 Five specific areas require attention: friction, friction and lighting, intersection, 

signalization of intersection, and undivided roadways. 

The insights from this study could promote a better understanding of the safety impacts of 

reduced visibility related issues in inclement weather. 
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APPENDIX 

Table 8. Parentage of Variations on Dimensions (Non-inclement Weather Crashes). 

 

Dimension Eigenvalue Percent of Variance 
Cumulative Percent of 

Variance 

Dimension 1 0.2688 6.05 6.05 

Dimension 2 0.2063 4.64 10.69 

Dimension 3 0.1280 2.88 13.57 

Dimension 4 0.1242 2.79 16.36 

Dimension 5 0.1213 2.73 19.09 

Dimension 6 0.1198 2.70 21.79 

Dimension 7 0.1177 2.65 24.44 

Dimension 8 0.1162 2.62 27.05 

Dimension 9 0.1143 2.57 29.63 

Dimension 10 0.1137 2.56 32.19 

Dimension 11 0.1134 2.55 34.74 

Dimension 12 0.1133 2.55 37.29 

Dimension 13 0.1128 2.54 39.83 

Dimension 14 0.1124 2.53 42.35 

Dimension 15 0.1121 2.52 44.88 

Dimension 16 0.1118 2.52 47.39 

Dimension 17 0.1114 2.51 49.90 

Dimension 18 0.1112 2.50 52.40 

Dimension 19 0.1110 2.50 54.90 

Dimension 20 0.1107 2.49 57.39 

Dimension 21 0.1105 2.49 59.88 

Dimension 22 0.1101 2.48 62.36 

Dimension 23 0.1101 2.48 64.83 

Dimension 24 0.1097 2.47 67.30 

Dimension 25 0.1094 2.46 69.76 

Dimension 26 0.1092 2.46 72.22 

Dimension 27 0.1084 2.44 74.66 

Dimension 28 0.1077 2.42 77.08 

Dimension 29 0.1074 2.42 79.50 

Dimension 30 0.1071 2.41 81.91 

Dimension 31 0.1051 2.36 84.27 

Dimension 32 0.1021 2.30 86.57 

Dimension 33 0.1007 2.27 88.83 

Dimension 34 0.0982 2.21 91.04 

Dimension 35 0.0956 2.15 93.19 

Dimension 36 0.0933 2.10 95.30 
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Dimension 37 0.0882 1.98 97.28 

Dimension 38 0.0668 1.50 98.78 

Dimension 39 0.0305 0.69 99.47 

Dimension 40 0.0236 0.53 100.00 

Table 9. Parentage of Variations on Dimensions (Inclement Weather Crashes). 

Dimension Eigenvalue 
Percent of 

Variance 

Cumulative 

Percent of 

Variance 

Dimension 1 0.2729 6.14 6.14 

Dimension 2 0.2105 4.74 10.88 

Dimension 3 0.1274 2.87 13.74 

Dimension 4 0.1242 2.79 16.54 

Dimension 5 0.1214 2.73 19.27 

Dimension 6 0.1191 2.68 21.95 

Dimension 7 0.1181 2.66 24.61 

Dimension 8 0.1167 2.63 27.23 

Dimension 9 0.1152 2.59 29.83 

Dimension 10 0.1149 2.58 32.41 

Dimension 11 0.1144 2.57 34.98 

Dimension 12 0.1135 2.55 37.54 

Dimension 13 0.1131 2.55 40.08 

Dimension 14 0.1122 2.52 42.61 

Dimension 15 0.1119 2.52 45.13 

Dimension 16 0.1116 2.51 47.64 

Dimension 17 0.1115 2.51 50.15 

Dimension 18 0.1114 2.51 52.65 

Dimension 19 0.1110 2.50 55.15 

Dimension 20 0.1110 2.50 57.65 

Dimension 21 0.1106 2.49 60.14 

Dimension 22 0.1103 2.48 62.62 

Dimension 23 0.1101 2.48 65.10 

Dimension 24 0.1098 2.47 67.57 

Dimension 25 0.1093 2.46 70.02 

Dimension 26 0.1087 2.45 72.47 

Dimension 27 0.1084 2.44 74.91 

Dimension 28 0.1076 2.42 77.33 

Dimension 29 0.1069 2.41 79.73 

Dimension 30 0.1061 2.39 82.12 

Dimension 31 0.1051 2.36 84.49 

Dimension 32 0.1035 2.33 86.81 

Dimension 33 0.1010 2.27 89.09 

Dimension 34 0.0984 2.21 91.30 

Dimension 35 0.0955 2.15 93.45 

Dimension 36 0.0908 2.04 95.49 

Dimension 37 0.0873 1.96 97.46 

Dimension 38 0.0604 1.36 98.82 

Dimension 39 0.0286 0.64 99.46 

Dimension 40 0.0239 0.54 100.00 
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Table 10. Coordinates of the Attributes on First Five Dimensions (Non-inclement Weather 

Crashes). 

Attributes Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Location_Rural -0.1820 1.7558 0.3121 -0.1140 0.1128 

Location_Urban 0.0386 -0.3722 -0.0662 0.0242 -0.0239 

Func_Class_Collector 0.4110 2.9265 -1.2280 -0.4465 0.2291 

Func_Class_Interstate -0.8839 -0.2344 0.0070 -0.0020 0.0235 

Func_Class_Local 1.2227 -0.7238 3.5348 3.1509 8.3281 

Func_Class_Minor Arterial 0.6980 0.8516 -0.7294 0.4844 0.2279 

Func_Class_Principal Arterial 0.9271 -0.1657 0.2967 -0.1096 -0.1244 

Severity_Fatal -0.2813 2.4035 -0.4928 2.1041 0.2252 

Severity_Injury 0.0348 0.0675 -0.1770 -0.3736 -0.2475 

Severity_PDO -0.0194 -0.0647 0.1166 0.2173 0.1546 

Lighting_Dark-No Street Lights -0.7084 1.8040 0.8505 0.2764 -0.6172 

Lighting_Dark-Street Lights Off -0.1212 0.4970 0.7767 1.0287 -0.0078 

Lighting_Dark-Street Lights On 0.1360 -0.4844 -0.3239 1.2909 -0.8822 

Lighting_Dawn/Dusk -0.0873 0.2490 -0.1146 0.9438 -0.0570 

Lighting_Daylight 0.0454 -0.0951 -0.0177 -0.2973 0.2078 

Lighting_Other 0.0059 0.1709 -0.5542 0.3504 0.2241 

Alignment_Curve & Grade -0.5146 0.9454 0.0904 0.2840 0.2593 

Alignment_Curve & Level -0.2093 0.9871 -0.7745 0.6107 0.3302 

Alignment_Curve at Hillcrest -0.1090 1.6850 1.0777 2.8258 -1.4682 

Alignment_Curve in Sag -0.4216 1.2056 0.6771 0.9558 0.5340 

Alignment_Other 0.2944 -0.1756 0.1351 4.6674 -1.4645 

Alignment_Straight & Grade -0.2311 -0.1088 -0.3334 -0.0480 -0.1728 

Alignment_Straight & Level 0.1289 -0.1364 0.1533 -0.1025 0.0006 

Alignment_Straight at Hillcr 0.0724 0.1710 -0.5153 1.2747 1.0448 

Alignment_Straight in Sag -0.5280 -0.1704 -0.1813 -0.7227 -0.1731 

Driver_Age_15–24 0.0257 0.1118 0.2144 0.3788 -0.5884 

Driver_Age_25–34 -0.1212 -0.1160 -0.0833 0.2302 -0.3192 

Driver_Age_35–44 -0.0535 -0.1446 -0.2489 -0.1043 0.0605 

Driver_Age_45–54 -0.0318 -0.0158 -0.1128 -0.2091 0.3716 

Driver_Age_55–64 0.0560 0.0751 0.0455 -0.3704 0.5318 

Driver_Age_65–74 0.2182 0.1886 0.1112 -0.6139 0.9403 

Driver_Age_75–Inf 0.5072 0.0969 0.2918 -0.8714 1.5797 

Driver_Gender_Female 0.0970 -0.0617 0.1306 -0.1408 -0.0899 

Driver_Gender_Male -0.0712 0.0528 -0.1039 0.1098 0.0820 

Driver_Gender_Not included -0.4316 -0.3046 0.0409 0.1228 -0.8325 
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fdas 

Table 10. Coordinates of the Attributes on First Five Dimensions (Non-inclement Weather 

Crashes). 

Attributes Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Posted_Speed_0–40 mph 0.8733 -0.2686 0.2162 0.2866 0.2396 

Posted_Speed_41–50 mph 0.6052 0.5906 -0.7170 -0.8522 -1.0115 

Posted_Speed_51–60 mph -0.9009 -0.0965 -0.3106 0.0253 0.1405 

Posted_Speed_61–70 mph -1.3432 1.5722 2.9720 -0.3279 -0.4964 

Road_Type_Alley 1.0484 0.0388 2.9987 -1.6063 -0.4680 

Road_Type_Center-Two Way Left Turn 

Lane 
1.2416 -0.6344 0.5217 -1.1465 -1.4109 

Road_Type_Driveway 0.7048 -0.2385 -0.7769 -0.3590 -1.9033 

Road_Type_Interchange Ramp -0.0007 1.0097 -3.1577 1.3701 7.9086 

Road_Type_One Way 1.0645 -1.0339 2.3721 0.9641 1.8295 

Road_Type_Other -0.1097 0.5931 0.8909 9.4512 -2.9168 

Road_Type_Reversible Road -1.1935 -0.9357 -3.1990 -1.0975 4.0205 

Road_Type_Two Way - Divided, no 

Barrier 
0.4843 -0.2967 -0.3541 0.4812 -0.3065 

Road_Type_Two Way - Divided, with 

Barrier 
-1.0129 -0.3101 0.0745 -0.0913 -0.0989 

Road_Type_Two Way - Undivided 0.6361 0.4726 -0.2681 0.1811 0.2003 
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Table 11. Coordinates of the Attributes on First Five Dimensions (Inclement Weather 

Crashes). 

Attributes Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Location_Rural -0.1950 1.7964 0.2415 -0.0114 0.0894 

Location_Urban 0.0414 -0.3812 -0.0512 0.0024 -0.0190 

Func_Class_Collector 0.5755 2.8929 -1.4902 -1.1391 -0.0288 

Func_Class_Interstate -0.7863 -0.2062 0.0103 0.0057 0.0245 

Func_Class_Local 1.0160 0.1689 5.8173 20.2843 20.8022 

Func_Class_Minor Arterial 0.8141 0.9057 -1.1039 0.4516 0.2515 

Func_Class_Principal Arterial 1.0384 -0.1351 0.4193 -0.0687 -0.1220 

Severity_Fatal -0.1346 2.0225 -0.5712 2.0687 -1.2839 

Severity_Injury 0.0380 -0.0150 -0.2194 -0.2705 -0.0424 

Severity_PDO -0.0201 -0.0055 0.1254 0.1357 0.0322 

Lighting_Dark-No Street Lights -0.6009 1.6127 0.4412 0.5584 -0.4403 

Lighting_Dark-Street Lights Off -0.3355 0.2672 -0.8667 0.1925 -1.3851 

Lighting_Dark-Street Lights On 0.1515 -0.5526 -0.3698 0.8628 -0.5275 

Lighting_Dawn/Dusk -0.0777 -0.0359 -0.1917 -0.1065 -0.2140 

Lighting_Daylight 0.0531 -0.0599 0.0931 -0.3975 0.2915 

Lighting_Other 0.0082 -0.0237 -0.4852 0.0988 0.9589 

Alignment_Curve & Grade -0.4236 0.9969 -0.1643 -0.0648 0.1989 

Alignment_Curve & Level -0.1920 0.7463 -0.7629 0.8533 0.1731 

Alignment_Curve at Hillcrest -0.6611 1.0671 1.4288 -1.3756 0.6305 

Alignment_Curve in Sag -0.4514 0.9969 0.1185 1.0941 -0.3691 

Alignment_Other 0.2732 -0.4164 -0.3773 2.5938 -0.4746 

Alignment_Straight & Grade -0.2146 -0.0955 0.0556 -0.0877 -0.1268 

Alignment_Straight & Level 0.1648 -0.1771 0.0924 -0.0798 -0.0077 

Alignment_Straight at Hillcr -0.0525 0.2397 -0.6103 1.2548 1.5823 

Alignment_Straight in Sag -0.5707 0.1045 -0.9921 -0.0615 -0.3106 

Driver_Age_15–24 0.0521 0.0948 -0.0455 0.5904 -0.4358 

Driver_Age_25–34 -0.1485 -0.1124 -0.0060 0.2330 -0.2769 

Driver_Age_35–44 -0.0473 -0.0964 0.0060 -0.2037 0.1069 

Driver_Age_45–54 0.0031 -0.0507 -0.0831 -0.3652 0.0882 

Driver_Age_55–64 0.0521 0.0803 -0.0542 -0.4564 0.5673 

Driver_Age_65–74 0.1943 0.1846 0.4169 -0.8640 1.1140 

Driver_Age_75–Inf 0.4727 0.2465 0.5302 -1.2299 1.3900 

Driver_Gender_Female 0.0916 -0.0559 0.0255 0.0090 -0.0173 

Driver_Gender_Male -0.0705 0.0449 -0.0109 -0.0262 0.0251 

Driver_Gender_Not included -0.0631 -0.1026 -0.6676 1.4287 -0.8702 
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Table 11. Coordinates of the Attributes on First Five Dimensions (Inclement Weather 

Crashes). 

Attributes Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

Posted_Speed_0–40 mph 0.9536 -0.2572 0.1238 0.3496 0.3313 

Posted_Speed_41–50 mph 0.7283 0.6146 -0.1898 -0.9017 -1.1483 

Posted_Speed_51–60 mph -0.8075 -0.1591 -0.3398 -0.0930 0.0661 

Posted_Speed_61–70 mph -1.3047 1.7160 2.6410 0.6030 -0.0812 

Road_Type_Alley 0.5338 -0.4815 2.7419 1.9837 0.7224 

Road_Type_Center-Two Way Left Turn 

Lane 1.3501 -0.6225 1.3026 -0.8342 -1.6813 

Road_Type_Driveway 1.1149 0.6289 -2.8659 0.8473 3.2391 

Road_Type_Interchange Ramp 0.1461 -1.1464 0.3947 3.1762 2.4702 

Road_Type_One Way 0.9239 -0.8913 1.9106 1.4032 2.7922 

Road_Type_Other -0.1806 0.2119 1.6783 2.3442 1.0020 

Road_Type_Reversible Road -1.0067 -1.0285 -3.4006 -2.2687 2.1120 

Road_Type_Two Way - Divided, no 

Barrier 0.7073 -0.2317 -0.1806 0.9937 -0.4132 

Road_Type_Two Way - Divided, with 

Barrier -0.9089 -0.2463 0.0861 -0.0514 -0.0852 

Road_Type_Two Way - Undivided 0.7656 0.4639 -0.3823 0.0690 0.2143 
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Table 12. Sample of Crash Narratives for Non-inclement Weather Crashes. 

Site Final Narrative 

New York 

Subject vehicle (SV) is stopped at a stop sign controlled intersection with a lead vehicle 

(V2) starting to enter the intersecting road as soon as traffic is clear. Traffic clears and 

V2 begins to accelerate off. The subject driver is talking on a cell phone. SV checks for 

traffic and begins to accelerate into the intersecting road but becomes distracted by the 

rear passenger for a moment while entering the intersection. At the same moment, V2 

brakes in the middle of the intersection. (There was no traffic coming.) The subject 

turns her attention back to the roadway and brakes immediately but still rear end strikes 

V2. Both drivers exit pull over and exit there vehicles to discuss the incident. 

Florida 

SV is traveling in a business area on a divided road in the left lane. V2 is behind SV 

and V3 is ahead of SV, all of which are in the same lane. V3 begins decelerating for 

traffic ahead and then SV begins decelerating as well. V2 behind SV appears to be 

decelerating as well, but fails to notice that SV has come to a complete stop and rear-

ending SV. SV skids forward and subject tries to brake in time, but ends up rear-ending 

V3 ahead. 

New York 

SV is traveling through an intermittently lit residential neighborhood at night. While 

yawning, the subject seems to stop paying attention and does not notice V2 parallel 

parked ahead. Subject approaches V2 at about 21 mph. Upon noticing V2, the subject 

brakes severely and steers to the left, but she is unable to avoid a rear-end collision. V2 

rolls up and over the curb and keeps rolling until it strikes a tree. 

Washington 

SV is stopped in a traffic lane preparing to turn left into an alley from an undivided 

four lane roadway. Just prior to the turn, the subject is distracted by talking with the 

front seat passenger. Vehicles in the left of two oncoming lanes stop to allow the 

subject to turn. Subject begins to turn, but his view of any oncoming traffic in the right 

lane is likely obscured by stopped vehicles in the left oncoming lane. V2, traveling in 

the right oncoming lane at constant speed, appears to brake in reaction to the subject 

turning into his path, but he is unable to avoid a collision with the front right corner of 

the subject vehicle at approximately −2.2g. 

Washington 

The subject driver and following V2 approach a signalized intersection in stop-and-go 

traffic in the left lane of an undivided commercial road. The subject driver is texting 

throughout the event. When lead traffic allows, the subject driver accelerates, then 

comes to a stop again. V2 accelerates with the subject vehicle, but does not use brake 

when the subject driver does. V2 seems to attempt no evasive maneuvers and rear-ends 

the subject vehicle. 

Indiana 

SV is traveling at a constant speed on a one-lane undivided road through a business 

area when V2, ahead, begins to execute a U-turn. SV begins to brake to try to avoid 

impact. V2 does not show any signs of evasive maneuvers. SV collides with the rear 

driver’s side of V2. 

North 

Carolina 

The subject driver is traveling in the right lane of a divided highway at night, in icy 

conditions. The subject driver attempts to merge onto an exit ramp at roughly 50 miles 

per hour and loses control of the vehicle. He brakes and steers to the left, and SV 

rotates clockwise, sliding off the road and into a ditch. 
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Table 13. Sample of Crash Narratives for Inclement Weather Crashes. 
Site Final Narrative 

Indiana The subject driver is traveling at night on an interstate in heavy rain. The subject driver 

is moving at a legal but unsafe (for the conditions) speed (60–65 mph) as he moves into 

the right lane. Immediately after the lane change, the subject vehicle begins to 

hydroplane. The subject driver steers left, causing the subject vehicle to rotate 180° 

counterclockwise, across four lanes of traffic, off the left side of the road, and into the 

guard rail. The subject vehicle continues to travel backward, knocking against the guard 

rail, until it runs out of momentum. 

Washington SV and V2 travel on a right-curving entrance ramp approaching a highway. It is raining, 

and the road surface is wet. It is night, and the area is lit by streetlights at regular 

intervals. The subject driver glances to his left to check traffic conditions. V2 comes to 

a complete stop at the point where the entrance ramp and highway intersect. The subject 

driver glances back ahead of the subject vehicle and brakes, but cannot avoid rear-

ending V2. 

Florida The subject driver travels in the right lane of a commercial highway, approaching a 

signalized intersection. It is raining, and the road surface is wet. V2 is ahead, stopped at 

the end of a queue of vehicles at a red light. The subject driver brakes, and the subject 

vehicle loses traction on the wet road surface and skids forward, rear-ending V2 at 

roughly 20 mph. 

Washington SV is traveling at constant speed along an undivided roadway approaching a signalized 

intersection. The light is red, and SV is too distracted with making external glances and 

talking to an unknown audience. Once SV realizes she is about to run the light the 

subject looks very surprised and applies the brakes. Meanwhile V2 is making a left turn 

through the intersection at the same moment the subject enters. SV brakes and steers 

right before colliding with V2. SV then exits the vehicle to discuss the incident with 

driver 2. 

Washington The subject driver negotiates a curve to the right on an undivided commercial road in 

rainy conditions, traveling at roughly 45 mph. V2 drives straight across traffic from the 

left toward a parking lot entrance on the subject driver’s right. The subject driver brakes 

and steers right. The subject vehicle loses traction and skids forward. V2 appears to not 

notice the subject driver and attempts no evasive maneuvers. The subject vehicle hits 

the front right side of V2. 

New York SV travels along an undivided road at night with no lead traffic. It is night, but the 

roadway is lit. It is also raining with lightning, and the roadway is wet. SV approaches a 

signalized intersection with a yellow light and begins to decelerate slightly. The light 

turns red before SV enters the intersection. SV drives through the red light. V2 in the 

dedicated left-turn lane enters the intersection and crosses SV’s path from the left. V2 

turns as SV’s light turns red, so it appears V2 illegally enters the intersection as well. 

SV brakes as an evasive maneuver, but ends up skidding forward due to the wet 

roadway. SV strikes the right side of V2 going 23 mph. Both cars rotate clockwise 

slightly before coming to complete stops. 

New York SV is approaching a signalized intersection and comes to a stop. The subject looks in 

her rearview mirror and notices V2 closing at an unsafe speed and braces herself for 

impact. V2 following SV continues the same rate of speed and rear end strikes SV 

above 2.0g. 

Florida The subject is traveling on a one-lane, non-divided roadway through a business area. 

The roadway is visibly wet and it is lightly raining. The subject is approaching a 

signalized intersection that has two dedicated turn lanes. 

 



 

 

 53 

Table 14. Sample SHRP2 Insight Final Narrative and Metadata. 
Participant ID XXX1 

Vehicle ID XXX 

Vehicle Class CAR 

Trip ID XXX 

Site New York 

Crash Severity 1  I - Most Severe 

Crash Severity 2  Not Applicable 

Event ID 116168906 

Event Severity 1  Crash 

Event Severity 2  Not Applicable 

Event Nature 1  Conflict with a lead vehicle 

Event Nature 2  None 

Vehicle 1 Configuration 20 

Vehicle 2 Configuration 21 

Vehicle 3 Configuration 9999 

Final Narrative  SV is stopped at a stop sign controlled intersection with V2 starting 

to enter the intersecting road as soon as traffic is clear. Traffic clears 

and V2 begins to accelerate off. The subject driver is talking on a cell 

phone. SV checks for traffic and begins to accelerate into the 

intersecting road but becomes distracted by the rear passenger for a 

moment while entering the intersection. At the same moment V2 

brakes in the middle of the intersection. (There was no traffic 

coming.) The subject turns her attention back to the roadway and 

brakes immediately but still rear end strikes V2. Both drivers exit pull 

over and exit there vehicles to discuss the incident. 

Precipitating Event  Other vehicle ahead - slowed and stopped 2 seconds or less 

Event Start XXX 

Event End XXX 

(Non)Motorist 2 Evasive Maneuver  No reaction 

(Non)Motorist 2 Pre-Incident Maneuver  Starting in traffic lane 

(Non)Motorist 3 Evasive Maneuver  Not applicable 

(Non)Motorist 3 Pre-Incident Maneuver  Not applicable 

Airbag Deployment  No 

Construction Zone  Not construction zone-related 

Contiguous Trvl Lanes 2 

Driver Seatbelt  Lap/shoulder belt properly worn 

Driving Behavior 1  Distracted 

Driving Behavior 2  No Additional Driver Behaviors 

Driving Behavior 3  No Additional Driver Behaviors 
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Fault  Subject driver 

Front Seat Passengers 1 

Grade  Grade Down 

Hands on Wheel  Left hand only 

Impact Time XXX 

Impairments  None apparent; 

Incident Type 1  Rear-end, striking 

Incident Type 2  None 

Infrastructure  None 

Intersection Influence  Yes, Stop Sign 

Light  Daylight 

Locality  Open Residential 

Maneuver Judgment  Safe and legal 

Object 2 Location  A = In front of the subject vehicle 

Object 2 Type  Van (minivan or standard van) 

Object 3 Location  Not applicable 

Object 3 Type  Not applicable 

Objects/Animals 0 

Others Involved 1 

Pre-Incident Maneuver  Starting in traffic lane 

Rd Alignment  Straight 

Reaction Start XXX 

Rear Seat Passengers 2 

Relation to Junction  Intersection 

Sec Task 1 End Time  Cell phone, Talking/listening, hand-held 

Sec Task 1 Outcome XXX 

Sec Task 1 Start Time  Yes 

Sec Task 1 XXX 

Sec Task 2 End Time  Passenger in rear seat - interaction 

Sec Task 2 Outcome XXX 

Sec Task 2 Start Time  Yes 

Sec Task 2 XXX 

Sec Task 3 End Time  No Additional Secondary Tasks 

Sec Task 3 Outcome 0 

Sec Task 3 Start Time  Not applicable 

Sec Task 3 0 

Surface Condition  Dry 

Thru Travel Lanes 1 

Traffic Control  Stop sign 

Traffic Density  Level-of-service B 
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Traffic Flow  Not divided - simple 2-way traffic way 

V1 Evasive Maneuver 1  Braked (no lockup) 

V1 Evasive Maneuver 2  Not Applicable 

V1 Lane Occupied 1 

V1 Post-Maneuver Control 1  Control maintained 

V1 Post-Maneuver Control 2  Not Applicable 

Vehicle Factors  None 

Vehicle Rollover  No 

Vis Obstructions  No obstruction 

Weather  No Adverse Conditions 

Diagram 

  

Note: 1 Dummy id. 

 

 

 


